Reinforcing Low-Volume Fraction Nano-TiN Particulates to Monolithical, Pure Mg for Enhanced Tensile and Compressive Response

نویسندگان

  • Ganesh Kumar Meenashisundaram
  • Mui Hoon Nai
  • Abdulhakim Almajid
  • Manoj Gupta
چکیده

Novel Mg (0.58, 0.97, 1.98 and 2.5) vol. % TiN nanocomposites containing titanium nitride (TiN) nanoparticulates of ~20 nm size are successfully synthesized by a disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of Mg-TiN nanocomposites indicate significant grain refinement with Mg 2.5 vol. % TiN exhibiting a minimum grain size of ~11 μm. X-ray diffraction studies of Mg-TiN nanocomposites indicate that addition of up to 1.98 vol. % TiN nanoparticulates aids in modifying the strong basal texture of pure Mg. An attempt is made to study the effects of the type of titanium (metal or ceramic), size, and volume fraction addition of nanoparticulates on the microstructural and mechanical properties of pure magnesium. Among the major strengthening mechanisms contributing to the strength of Mg-Ti-based nanocomposites, Hall-Petch strengthening was found to play a vital role. The synthesized Mg-TiN nanocomposites exhibited superior tensile and compression properties indicating significant improvement in the fracture strain values of pure magnesium under loading. Under tensile and compression loading the presence of titanium (metal or ductile phase) nanoparticulates were found to contribute more towards the strengthening, whereas ceramics of titanium (brittle phases) contribute more towards the ductility of pure magnesium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure and Mechanical Properties of Mg-5Nb Metal-Metal Composite Reinforced with Nano SiC Ceramic Particles

In this work, a Mg-5Nb metal–metal composite was reinforced with nano SiC (SiCn) ceramic reinforcement of varying volume fractions, using the disintegrated melt deposition technique. The extruded Mg-5Nb-SiCn composites were characterized for their microstructure and mechanical properties. Based on the results obtained, it was observed that the volume fraction of nano-SiC reinforcement played an...

متن کامل

Influence of Micron-Ti and Nano-Cu Additions on the Microstructure and Mechanical Properties of Pure Magnesium

In this study, metallic elements that have limited/negligible solubility in pure magnesium (Mg) were incorporated in Mg using the disintegrated melt deposition technique. The metallic elements added include: (i) micron sized titanium (Ti) particulates with negligible solubility; (ii) nano sized copper (Cu) particulates with limited solubility; and (iii) the combination of micro-Ti and nano-Cu. ...

متن کامل

Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with ...

متن کامل

ENHANCING TENSILE RESPONSE OF Sn USING Cu AT NANO LENGTH SCALE AND HIGH TEMPERATURE EXTRUSION

In the present study, 1.1 volume percent of nano size copper was incorporated into pure tin using hybrid microwave sintering assisted powder metallurgy route. Microwave sintered samples were extruded both at room temperature and at 230 °C. Microstructural characterization studies were conducted on the extruded samples to investigate the distribution characteristics of secondary phase and grain ...

متن کامل

Grain refinement, Microstructural characterization, and tensile properties of die-cast AZ91 alloy via Lead and Tin additions

Effects of different amounts of lead (Pb) and tin (Sn) on microstructure and tensile properties of the AZ91 alloy were studied. The results presented that the microstructure of AZ91 alloy is consisted the α-Mg phase and semi-continuous network of β-Mg17Al12 intermetallics. For the as-cast AZ91 alloy, the average grain siz and the β phase volume fraction were 96.2 µm and of 25.3%, respectively. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016